Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 139
1.
J Clin Invest ; 134(9)2024 Mar 21.
Article En | MEDLINE | ID: mdl-38512401

Bacterial translocation from the gut microbiota is a source of sepsis in susceptible patients. Previous work suggests that overgrowth of gut pathobionts, including Klebsiella pneumoniae, increases the risk of disseminated infection. Our data from a human dietary intervention study found that, in the absence of fiber, K. pneumoniae bloomed during microbiota recovery from antibiotic treatment. We thus hypothesized that dietary nutrients directly support or suppress colonization of this gut pathobiont in the microbiota. Consistent with our study in humans, complex carbohydrates in dietary fiber suppressed the colonization of K. pneumoniae and allowed for recovery of competing commensals in mouse models. In contrast, through ex vivo and in vivo modeling, we identified simple carbohydrates as a limiting resource for K. pneumoniae in the gut. As proof of principle, supplementation with lactulose, a nonabsorbed simple carbohydrate and an FDA-approved therapy, increased colonization of K. pneumoniae. Disruption of the intestinal epithelium led to dissemination of K. pneumoniae into the bloodstream and liver, which was prevented by dietary fiber. Our results show that dietary simple and complex carbohydrates were critical not only in the regulation of pathobiont colonization but also disseminated infection, suggesting that targeted dietary interventions may offer a preventative strategy in high-risk patients.


Dietary Carbohydrates , Gastrointestinal Microbiome , Klebsiella Infections , Klebsiella pneumoniae , Klebsiella pneumoniae/metabolism , Humans , Mice , Animals , Klebsiella Infections/microbiology , Klebsiella Infections/prevention & control , Dietary Carbohydrates/metabolism , Female , Male , Dietary Fiber/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Intestines/microbiology
2.
Gut Microbes ; 16(1): 2317932, 2024.
Article En | MEDLINE | ID: mdl-38404111

Dysbiosis is associated with pediatric and adult-onset inflammatory bowel disease (IBD), but the role of dysbiosis and the microbiome in very early onset IBD (VEO-IBD) has not yet been described. Here, we aimed to demonstrate the impact of age and inflammation on microbial community structure using shotgun metagenomic sequencing in children with VEO-IBD, pediatric-onset IBD, and age-matched pediatric healthy controls (HC) observed longitudinally over the course of 8 weeks. We found disease-related differences in alpha and beta diversity between HC and children with IBD or VEO-IBD. Using a healthy microbial maturity index modeled from HC across the age range to characterize their gut microbiota, we found that children with pediatric-onset IBD and VEO-IBD had lower maturity than their age-matched HC groups, suggesting a disease effect on the microbial community. In addition, patients with pediatric IBD had significantly lower maturity than those with VEO-IBD, who had more heterogeneity at the youngest ages, highlighting differences in these two cohorts that were not captured in standard comparisons of alpha and beta diversity. These results demonstrate that young age and inflammation independently impact microbial community structure. However, the effect is not additive in the youngest patients, likely because of the heterogeneous and dynamic stool microbiome in this population.


Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Microbiota , Adult , Humans , Child , Infant , Dysbiosis , Inflammatory Bowel Diseases/epidemiology , Inflammation
3.
Nature ; 626(8000): 859-863, 2024 Feb.
Article En | MEDLINE | ID: mdl-38326609

Bacteria in the gastrointestinal tract produce amino acid bile acid amidates that can affect host-mediated metabolic processes1-6; however, the bacterial gene(s) responsible for their production remain unknown. Herein, we report that bile salt hydrolase (BSH) possesses dual functions in bile acid metabolism. Specifically, we identified a previously unknown role for BSH as an amine N-acyltransferase that conjugates amines to bile acids, thus forming bacterial bile acid amidates (BBAAs). To characterize this amine N-acyltransferase BSH activity, we used pharmacological inhibition of BSH, heterologous expression of bsh and mutants in Escherichia coli and bsh knockout and complementation in Bacteroides fragilis to demonstrate that BSH generates BBAAs. We further show in a human infant cohort that BBAA production is positively correlated with the colonization of bsh-expressing bacteria. Lastly, we report that in cell culture models, BBAAs activate host ligand-activated transcription factors including the pregnane X receptor and the aryl hydrocarbon receptor. These findings enhance our understanding of how gut bacteria, through the promiscuous actions of BSH, have a significant role in regulating the bile acid metabolic network.


Acyltransferases , Amidohydrolases , Amines , Bile Acids and Salts , Biocatalysis , Gastrointestinal Microbiome , Humans , Acyltransferases/metabolism , Amidohydrolases/metabolism , Amines/chemistry , Amines/metabolism , Bacteroides fragilis/enzymology , Bacteroides fragilis/genetics , Bacteroides fragilis/metabolism , Bile Acids and Salts/chemistry , Bile Acids and Salts/metabolism , Cohort Studies , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Gastrointestinal Microbiome/physiology , Ligands , Pregnane X Receptor/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Transcription Factors/metabolism , Infant , Cell Culture Techniques
4.
Microbiome ; 12(1): 31, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38383483

BACKGROUND: People living with HIV (PLWH), even when viral replication is controlled through antiretroviral therapy (ART), experience persistent inflammation. This inflammation is partly attributed to intestinal microbial dysbiosis and translocation, which may lead to non-AIDS-related aging-associated comorbidities. The extent to which living with HIV - influenced by the infection itself, ART usage, sexual orientation, or other associated factors - affects the biological age of the intestines is unclear. Furthermore, the role of microbial dysbiosis and translocation in the biological aging of PLWH remains to be elucidated. To investigate these uncertainties, we used a systems biology approach, analyzing colon and ileal biopsies, blood samples, and stool specimens from PLWH on ART and people living without HIV (PLWoH) as controls. RESULTS: PLWH exhibit accelerated biological aging in the colon, ileum, and blood, as measured by various epigenetic aging clocks, compared to PLWoH. Investigating the relationship between microbial translocation and biological aging, PLWH had decreased levels of tight junction proteins in the intestines, along with increased microbial translocation. This intestinal permeability correlated with faster biological aging and increased inflammation. When investigating the relationship between microbial dysbiosis and biological aging, the intestines of PLWH had higher abundance of specific pro-inflammatory bacteria, such as Catenibacterium and Prevotella. These bacteria correlated with accelerated biological aging. Conversely, the intestines of PLWH had lower abundance of bacteria known for producing the anti-inflammatory short-chain fatty acids, such as Subdoligranulum and Erysipelotrichaceae, and these bacteria were associated with slower biological aging. Correlation networks revealed significant links between specific microbial genera in the colon and ileum (but not in feces), increased aging, a rise in pro-inflammatory microbe-related metabolites (e.g., those in the tryptophan metabolism pathway), and a decrease in anti-inflammatory metabolites like hippuric acid. CONCLUSIONS: We identified specific microbial compositions and microbiota-related metabolic pathways that are intertwined with intestinal and systemic biological aging. This microbial signature of biological aging is likely reflecting various factors including the HIV infection itself, ART usage, sexual orientation, and other aspects associated with living with HIV. A deeper understanding of the mechanisms underlying these connections could offer potential strategies to mitigate accelerated aging and its associated health complications. Video Abstract.


Gastrointestinal Microbiome , HIV Infections , Humans , Female , Male , HIV Infections/drug therapy , Dysbiosis/microbiology , Gastrointestinal Microbiome/genetics , Intestines/microbiology , Aging , Bacteria/genetics , Inflammation/microbiology , Anti-Inflammatory Agents
5.
Cell Mol Gastroenterol Hepatol ; 17(1): 131-148, 2024.
Article En | MEDLINE | ID: mdl-37739064

BACKGROUND & AIMS: Altered plasma acylcarnitine levels are well-known biomarkers for a variety of mitochondrial fatty acid oxidation disorders and can be used as an alternative energy source for the intestinal epithelium when short-chain fatty acids are low. These membrane-permeable fatty acid intermediates are excreted into the gut lumen via bile and are increased in the feces of patients with inflammatory bowel disease (IBD). METHODS: Herein, based on studies in human subjects, animal models, and bacterial cultures, we show a strong positive correlation between fecal carnitine and acylcarnitines and the abundance of Enterobacteriaceae in IBD where they can be consumed by bacteria both in vitro and in vivo. RESULTS: Carnitine metabolism promotes the growth of Escherichia coli via anaerobic respiration dependent on the cai operon, and acetylcarnitine dietary supplementation increases fecal carnitine levels with enhanced intestinal colonization of the enteric pathogen Citrobacter rodentium. CONCLUSIONS: In total, these results indicate that the increased luminal concentrations of carnitine and acylcarnitines in patients with IBD may promote the expansion of pathobionts belonging to the Enterobacteriaceae family, thereby contributing to disease pathogenesis.


Enterobacteriaceae , Inflammatory Bowel Diseases , Animals , Humans , Enterobacteriaceae/metabolism , Dysbiosis , Inflammatory Bowel Diseases/microbiology , Carnitine/metabolism , Fatty Acids/metabolism , Escherichia coli , Biomarkers
6.
Res Sq ; 2023 Oct 30.
Article En | MEDLINE | ID: mdl-37961645

Background: People with HIV (PWH), even with controlled viral replication through antiretroviral therapy (ART), experience persistent inflammation. This is partly due to intestinal microbial dysbiosis and translocation. Such ongoing inflammation may lead to the development of non-AIDS-related aging-associated comorbidities. However, there remains uncertainty regarding whether HIV affects the biological age of the intestines and whether microbial dysbiosis and translocation influence the biological aging process in PWH on ART. To fill this knowledge gap, we utilized a systems biology approach, analyzing colon and ileal biopsies, blood samples, and stool specimens from PWH on ART and their matched HIV-negative counterparts. Results: Despite having similar chronological ages, PWH on ART exhibit accelerated biological aging in the colon, ileum, and blood, as measured by various epigenetic aging clocks, compared to HIV-negative controls. Investigating the relationship between microbial translocation and biological aging, PWH on ART had decreased levels of tight junction proteins in the colon and ileum, along with increased microbial translocation. This increased intestinal permeability correlated with faster intestinal and systemic biological aging, as well as increased systemic inflammation. When investigating the relationship between microbial dysbiosis and biological aging, the intestines of PWH on ART had higher abundance of specific pro-inflammatory bacterial genera, such as Catenibacterium and Prevotella. These bacteria significantly correlated with accelerated local and systemic biological aging. Conversely, the intestines of PWH on ART had lower abundance of bacterial genera known for producing short-chain fatty acids and exhibiting anti-inflammatory properties, such as Subdoligranulum and Erysipelotrichaceae, and these bacteria taxa were associated with slower biological aging. Correlation networks revealed significant links between specific microbial genera in the colon and ileum (but not in feces), increased aging, a rise in pro-inflammatory microbial-related metabolites (e.g., those in the tryptophan metabolism pathway), and a decrease in anti-inflammatory metabolites like hippuric acid and oleic acid. Conclusions: We identified a specific microbial composition and microbiome-related metabolic pathways that are intertwined with both intestinal and systemic biological aging in PWH on ART. A deeper understanding of the mechanisms underlying these connections could potentially offer strategies to counteract premature aging and its associated health complications in PWH.

7.
Int J Mol Sci ; 24(22)2023 Nov 09.
Article En | MEDLINE | ID: mdl-38003317

Ivermectin is a an anti-helminthic that is critical globally for both human and veterinary care. To the best of our knowledge, information available regarding the influence of ivermectin (IVM) on the gut microbiota has only been collected from diseased donors, who were treated with IVM alone or in combination with other medicines. Results thus obtained were influenced by multiple elements beyond IVM, such as disease, and other medical treatments. The research presented here investigated the impact of IVM on the gut microbial structure established in a Triple-SHIME® (simulator of the human intestinal microbial ecosystem), using fecal material from three healthy adults. The microbial communities were grown using three different culture media: standard SHIME media and SHIME media with either soluble or insoluble fiber added (control, SF, ISF). IVM introduced minor and temporary changes to the gut microbial community in terms of composition and metabolite production, as revealed by 16S rRNA amplicon sequencing analysis, flow cytometry, and GC-MS. Thus, it was concluded that IVM is not expected to induce dysbiosis or yield adverse effects if administered to healthy adults. In addition, the donor's starting community influences the relationship between IVM and the gut microbiome, and the soluble fiber component in feed could protect the gut microbiota from IVM; an increase in short-chain fatty acid production was predicted by PICRUSt2 and detected with IVM treatment.


Gastrointestinal Microbiome , Ivermectin , Adult , Humans , Feces , Gastrointestinal Microbiome/genetics , Ivermectin/pharmacology , RNA, Ribosomal, 16S/genetics
8.
J Cyst Fibros ; 2023 Oct 07.
Article En | MEDLINE | ID: mdl-37813785

BACKGROUND: Alterations in gastrointestinal health are prominent manifestations of cystic fibrosis (CF) and can independently impact pulmonary function. Ivacaftor has been associated with robust improvements in pulmonary function and weight gain, but less is known about the impact of ivacaftor on the fecal microbiome, lipidome, and bile acids. METHODS: Stool samples from 18 patients with CF and gating mutations (ages 6-61 years, 13 pancreatic insufficient) were analyzed for fecal microbiome and lipidome composition as well as bile acid concentrations at baseline and after 3 months of treatment with ivacaftor. Microbiome composition was also assessed in a healthy reference cohort. RESULTS: Alpha and beta diversity of the microbiome were different between CF and reference cohort at baseline, but no treatment effect was seen in the CF cohort between baseline and 3 months. Seven lipids increased with treatment. No differences were seen in bile acid concentrations after treatment in CF. At baseline, 403 lipids and unconjugated bile acids were different between pancreatic insufficient (PI-CF) and sufficient (PS-CF) groups and 107 lipids were different between PI-CF and PS-CF after 3 months of treatment. CONCLUSIONS: The composition and diversity of the fecal microbiome were different in CF as compared to a healthy reference, and did not change after 3 months of ivacaftor. We detected modest differences in the fecal lipidome with treatment. Differences in lipid and bile acid profiles between PS-CF and PI-CF were attenuated after 3 months of treatment.

9.
Crit Rev Food Sci Nutr ; 63(22): 5620-5642, 2023.
Article En | MEDLINE | ID: mdl-37667870

The primary aim of this review was to systematically evaluate the literature regarding the effect of pre-, pro-, or synbiotic supplementation in infant formula on the gastrointestinal microbiota. The Cochrane methodology for systematic reviews of randomized controlled trials (RCTs) was employed. Five databases were searched and 32 RCTs (2010-2021) were identified for inclusion: 20 prebiotic, 6 probiotic, and 6 synbiotic. The methods utilized to evaluate gastrointestinal microbiota varied across studies and included colony plating, fluorescence in situ hybridization, quantitative real-time polymerase chain reaction, or tagged sequencing of the 16S rRNA gene. Fecal Bifidobacterium levels increased with supplementation of prebiotics and synbiotics but not with probiotics alone. Probiotic and synbiotic supplementation generally increased fecal levels of the bacterial strain supplemented in the formula. Across all pre-, pro-, and synbiotic-supplemented formulas, results were inconsistent regarding fecal Clostridium levels. Fecal pH was lower with some prebiotic and synbiotic supplementation; however, no difference was seen with probiotics. Softer stools were often reported in infants supplemented with pre- and synbiotics, yet results were inconsistent for probiotic-supplemented formula. Limited evidence demonstrates that pre- and synbiotic supplementation increases fecal Bifidobacterium levels. Future studies utilizing comprehensive methodologies and additional studies in probiotics and synbiotics are warranted.


Gastrointestinal Microbiome , Probiotics , Synbiotics , Infant , Humans , Prebiotics , Systematic Reviews as Topic , Bifidobacterium
10.
Microorganisms ; 11(7)2023 Jul 21.
Article En | MEDLINE | ID: mdl-37513022

The gut microbiome plays a critical role in maintaining overall health and immune function. However, dysbiosis, an imbalance in microbiome composition, can have profound effects on various aspects of human health, including susceptibility to viral infections. Despite numerous studies investigating the influence of viral infections on gut microbiome, the impact of gut dysbiosis on viral infection and pathogenesis remains relatively understudied. The clinical variability observed in SARS-CoV-2 and seasonal influenza infections, and the presence of natural HIV suppressors, suggests that host-intrinsic factors, including the gut microbiome, may contribute to viral pathogenesis. The gut microbiome has been shown to influence the host immune system by regulating intestinal homeostasis through interactions with immune cells. This review aims to enhance our understanding of how viral infections perturb the gut microbiome and mucosal immune cells, affecting host susceptibility and response to viral infections. Specifically, we focus on exploring the interactions between gamma delta (γδ) T cells and gut microbes in the context of inflammatory viral pathogenesis and examine studies highlighting the role of the gut microbiome in viral disease outcomes. Furthermore, we discuss emerging evidence and potential future directions for microbiome modulation therapy in the context of viral pathogenesis.

11.
bioRxiv ; 2023 Jun 11.
Article En | MEDLINE | ID: mdl-37292978

Dysbiosis of the gut microbiota is increasingly appreciated as both a consequence and precipitant of human disease. The outgrowth of the bacterial family Enterobacteriaceae is a common feature of dysbiosis, including the human pathogen Klebsiella pneumoniae . Dietary interventions have proven efficacious in the resolution of dysbiosis, though the specific dietary components involved remain poorly defined. Based on a previous human diet study, we hypothesized that dietary nutrients serve as a key resource for the growth of bacteria found in dysbiosis. Through human sample testing, and ex-vivo , and in vivo modeling, we find that nitrogen is not a limiting resource for the growth of Enterobacteriaceae in the gut, contrary to previous studies. Instead, we identify dietary simple carbohydrates as critical in colonization of K. pneumoniae . We additionally find that dietary fiber is necessary for colonization resistance against K. pneumoniae , mediated by recovery of the commensal microbiota, and protecting the host against dissemination from the gut microbiota during colitis. Targeted dietary therapies based on these findings may offer a therapeutic strategy in susceptible patients with dysbiosis.

12.
Foods ; 12(11)2023 May 24.
Article En | MEDLINE | ID: mdl-37297350

In the present research, we investigated changes in the gut metabolome that occurred in response to the administration of the Laticaseibacillus rhamnosus strain GG (LGG). The probiotics were added to the ascending colon region of mature microbial communities established in a human intestinal microbial ecosystem simulator. Shotgun metagenomic sequencing and metabolome analysis suggested that the changes in microbial community composition corresponded with changes to metabolic output, and we can infer linkages between some metabolites and microorganisms. The in vitro method permits a spatially-resolved view of metabolic transformations under human physiological conditions. By this method, we found that tryptophan and tyrosine were mainly produced in the ascending colon region, while their derivatives were detected in the transverse and descending regions, revealing sequential amino acid metabolic pathways along with the colonic tract. The addition of LGG appeared to promote the production of indole propionic acid, which is positively associated with human health. Furthermore, the microbial community responsible for the production of indole propionic acid may be broader than is currently known.

13.
Front Microbiol ; 14: 1165771, 2023.
Article En | MEDLINE | ID: mdl-37333640

Introduction: The consumption of probiotics may influence children's gut microbiome and metabolome, which may reflect shifts in gut microbial diversity composition and metabolism. These potential changes might have a beneficial impact on health. However, there is a lack of evidence investigating the effect of probiotics on the gut microbiome and metabolome of children. We aimed to examine the potential impact of a two (Streptococcus thermophilus and Lactobacillus delbrueckii; S2) vs. three (S2 + Bifidobacterium animalis subsp. lactis strain BB-12) strain-supplemented yogurt. Methods: Included in this study were 59 participants, aged one to five years old, recruited to phase I of a double-blinded, randomized controlled trial. Fecal samples were collected at baseline, after the intervention, and at twenty days post-intervention discontinuation, and untargeted metabolomics and shotgun metagenomics were performed. Results: Shotgun metagenomics and metabolomic analyses showed no global changes in either intervention group's gut microbiome alpha or beta diversity indices, except for a lower microbial diversity in the S2 + BB12 group at Day 30. The relative abundance of the two and three intervention bacteria increased in the S2 and S2 + BB12 groups, respectively, from Day 0 to Day 10. In the S2 + BB12 group, the abundance of several fecal metabolites increased at Day 10, including alanine, glycine, lysine, phenylalanine, serine, and valine. These fecal metabolite changes did not occur in the S2 group. Discussion: In conclusion, there were were no significant differences in the global metagenomic or metabolomic profiles between healthy children receiving two (S2) vs. three (S2 + BB12) probiotic strains for 10 days. Nevertheless, we observed a significant increase (Day 0 to Day 10) in the relative abundance of the two and three probiotics administered in the S2 and S2 + BB12 groups, respectively, indicating the intervention had a measurable impact on the bacteria of interest in the gut microbiome. Future research using longer probiotic intervention durations and in children at risk for gastrointestinal disorders may elucidate if functional metabolite changes confer a protective gastrointestinal effect.

14.
Microbiome ; 11(1): 123, 2023 06 01.
Article En | MEDLINE | ID: mdl-37264481

BACKGROUND: Dental caries is a microbe and sugar-mediated biofilm-dependent oral disease. Of particular significance, a virulent type of dental caries, known as severe early childhood caries (S-ECC), is characterized by the synergistic polymicrobial interaction between the cariogenic bacterium, Streptococcus mutans, and an opportunistic fungal pathogen, Candida albicans. Although cross-sectional studies reveal their important roles in caries development, these exhibit limitations in determining the significance of these microbial interactions in the pathogenesis of the disease. Thus, it remains unclear the mechanism(s) through which the cross-kingdom interaction modulates the composition of the plaque microbiome. Here, we employed a novel ex vivo saliva-derived microcosm biofilm model to assess how exogenous pathogens could impact the structural and functional characteristics of the indigenous native oral microbiota. RESULTS: Through shotgun whole metagenome sequencing, we observed that saliva-derived biofilm has decreased richness and diversity but increased sugar-related metabolism relative to the planktonic phase. Addition of S. mutans and/or C. albicans to the native microbiome drove significant changes in its bacterial composition. In addition, the effect of the exogenous pathogens on microbiome diversity and taxonomic abundances varied depending on the sugar type. While the addition of S. mutans induced a broader effect on Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog abundances with glucose/fructose, S. mutans-C. albicans combination under sucrose conditions triggered unique and specific changes in microbiota composition/diversity as well as specific effects on KEGG pathways. Finally, we observed the presence of human epithelial cells within the biofilms via confocal microscopy imaging. CONCLUSIONS: Our data revealed that the presence of S. mutans and C. albicans, alone or in combination, as well as the addition of different sugars, induced unique alterations in both the composition and functional attributes of the biofilms. In particular, the combination of S. mutans and C. albicans seemed to drive the development (and perhaps the severity) of a dysbiotic/cariogenic oral microbiome. Our work provides a unique and pragmatic biofilm model for investigating the functional microbiome in health and disease as well as developing strategies to modulate the microbiome. Video Abstract.


Dental Caries , Microbiota , Child, Preschool , Humans , Biofilms , Candida albicans/genetics , Cross-Sectional Studies , Streptococcus mutans/genetics , Sugars/metabolism
15.
Sci Immunol ; 8(83): eade2335, 2023 05 26.
Article En | MEDLINE | ID: mdl-37235682

The ability of most patients with selective immunoglobulin A (IgA) deficiency (SIgAD) to remain apparently healthy has been a persistent clinical conundrum. Compensatory mechanisms, including IgM, have been proposed, yet it remains unclear how secretory IgA and IgM work together in the mucosal system and, on a larger scale, whether the systemic and mucosal anti-commensal responses are redundant or have unique features. To address this gap in knowledge, we developed an integrated host-commensal approach combining microbial flow cytometry and metagenomic sequencing (mFLOW-Seq) to comprehensively define which microbes induce mucosal and systemic antibodies. We coupled this approach with high-dimensional immune profiling to study a cohort of pediatric patients with SIgAD and household control siblings. We found that mucosal and systemic antibody networks cooperate to maintain homeostasis by targeting a common subset of commensal microbes. In IgA-deficiency, we find increased translocation of specific bacterial taxa associated with elevated levels of systemic IgG targeting fecal microbiota. Associated features of immune system dysregulation in IgA-deficient mice and humans included elevated levels of inflammatory cytokines, enhanced follicular CD4 T helper cell frequency and activation, and an altered CD8 T cell activation state. Although SIgAD is clinically defined by the absence of serum IgA, the symptomatology and immune dysregulation were concentrated in the SIgAD participants who were also fecal IgA deficient. These findings reveal that mucosal IgA deficiency leads to aberrant systemic exposures and immune responses to commensal microbes, which increase the likelihood of humoral and cellular immune dysregulation and symptomatic disease in patients with IgA deficiency.


IgA Deficiency , Humans , Child , Mice , Animals , Immunoglobulin A, Secretory , Immunoglobulin M , Homeostasis
16.
Hepatology ; 78(6): 1843-1857, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37222264

BACKGROUND AND AIMS: There is great interest in identifying microbiome features as reliable noninvasive diagnostic and/or prognostic biomarkers for non-cirrhotic NASH fibrosis. Several cross-sectional studies have reported gut microbiome features associated with advanced NASH fibrosis and cirrhosis, where the most prominent features are associated with cirrhosis. However, no large, prospectively collected data exist establishing microbiome features that discern non-cirrhotic NASH fibrosis, integrate the fecal metabolome as disease biomarkers, and are unconfounded by BMI and age. APPROACH AND RESULTS: Results from shotgun metagenomic sequencing performed on fecal samples prospectively collected from 279 US patients with biopsy-proven NASH (F1-F3 fibrosis) enrolled in the REGENERATE I303 study were compared to those from 3 healthy control cohorts and integrated with the absolute quantification of fecal bile acids. Microbiota beta-diversity was different, and BMI- and age-adjusted logistic regression identified 12 NASH-associated species. Random forest prediction models resulted in an AUC of 0.75-0.81 in a receiver operator characteristic analysis. In addition, specific fecal bile acids were significantly lower in NASH and correlated with plasma C4 levels. Microbial gene abundance analysis revealed 127 genes increased in controls, many involving protein synthesis, whereas 362 genes were increased in NASH many involving bacterial environmental responses (false discovery rate < 0.01). Finally, we provide evidence that fecal bile acid levels may be a better discriminator of non-cirrhotic NASH versus health than either plasma bile acids or gut microbiome features. CONCLUSIONS: These results may have value as a set of baseline characteristics of non-cirrhotic NASH against which therapeutic interventions to prevent cirrhosis can be compared and microbiome-based diagnostic biomarkers identified.


Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/complications , Cross-Sectional Studies , Liver Cirrhosis/complications , Fibrosis , Bile Acids and Salts , Feces/microbiology , Biomarkers
17.
Zoonoses Public Health ; 70(4): 341-351, 2023 06.
Article En | MEDLINE | ID: mdl-36779297

Companion animals have been shown to carry Clostridioides difficile strains that are similar or identical to strains found in people, and a small number of studies have shown that pets carry genetically identical C. difficile isolates as their owners, suggesting inter-species transmission. However, the directionality of transmission is ultimately unknown, and the frequency with which animals acquire C. difficile following their owners' infection is unclear. The goal of this study was to assess how often pets belonging to people with C. difficile infection carry genetically related C. difficile isolates. We enrolled pet owners from two medical institutions (University of Pennsylvania Health System (UPHS) and The Ohio State University Wexner Medical Center (OSUWMC)) who had diarrhoea with or without positive C. difficile assays and tested their faeces and their pets' faeces for C. difficile using both anaerobic culture and PCR assays. When microorganisms were obtained from both the owner and pet and had the same toxin profile or ribotype, isolates underwent genomic sequencing. Faecal samples were obtained from a total of 59 humans, 72 dogs and 9 cats, representing 47 complete households (i.e. where a sample was available from the owner and at least one pet). Of these, C. difficile was detected in 30 humans, 10 dogs and 0 cats. There were only two households where C. difficile was detected in both the owner and pet. In one of these households, the C. difficile isolates were of different toxin profiles/ribotypes (A+/B+ / RT 499 from the owner, A-/B- / RT PR22386 from the dog). In the other household, the isolates were genetically identical (one SNP difference). Interestingly, the dog from this household had recently received a course of antibiotics (cefpodoxime and metronidazole). Our findings suggest that inter-species transmission of C. difficile occurs infrequently in households with human C. difficile infections.


Clostridioides difficile , Humans , Animals , Dogs , Clostridioides/genetics , Pets , Ribotyping/veterinary , Anti-Bacterial Agents
18.
Am J Physiol Gastrointest Liver Physiol ; 324(5): G354-G368, 2023 05 01.
Article En | MEDLINE | ID: mdl-36852920

Calorie restriction can enhance the regenerative capacity of the injured intestinal epithelium. Among other metabolic changes, calorie restriction can activate the autophagy pathway. Although independent studies have attributed the regenerative benefit of calorie restriction to downregulation of mTORC1, it is not known whether autophagy itself is required for the regenerative benefit of calorie restriction. We used mouse and organoid models with autophagy gene deletion to evaluate the contribution of autophagy to intestinal epithelial regeneration following calorie restriction. In the absence of injury, mice with intestinal epithelial-specific deletion of autophagy gene Atg7 (Atg7ΔIEC) exhibit weight loss and histological changes similar to wild-type mice following calorie restriction. Conversely, calorie-restricted Atg7ΔIEC mice displayed a significant reduction in regenerative crypt foci after irradiation compared with calorie-restricted wild-type mice. Targeted analyses of tissue metabolites in calorie-restricted mice revealed an association between calorie restriction and reduced glycocholic acid (GCA) in wild-type mice but not in Atg7ΔIEC mice. To evaluate whether GCA can directly modulate epithelial stem cell self-renewal, we performed enteroid formation assays with or without GCA. Wild-type enteroids exhibited reduced enteroid formation efficiency in response to GCA treatment, suggesting that reduced availability of GCA during calorie restriction may be one mechanism by which calorie restriction favors epithelial regeneration in a manner dependent upon epithelial autophagy. Taken together, our data support the premise that intestinal epithelial Atg7 is required for the regenerative benefit of calorie restriction, due in part to its role in modulating luminal GCA with direct effects on epithelial stem cell self-renewal.NEW & NOTEWORTHY Calorie restriction is associated with enhanced intestinal regeneration after irradiation, but the requirement of autophagy for this process is not known. Our data support the premise that intestinal epithelial autophagy is required for the regenerative benefit of calorie restriction. We also report that luminal levels of primary bile acid glycocholic acid are modulated by epithelial cell autophagy during calorie restriction with direct effects on epithelial stem cell function.


Caloric Restriction , Intestines , Mice , Animals , Intestines/physiology , Intestinal Mucosa/metabolism , Epithelial Cells , Autophagy/genetics
19.
medRxiv ; 2023 Feb 06.
Article En | MEDLINE | ID: mdl-36798243

The consumption of probiotics may influence children's gut microbiome and metabolome, which may reflect shifts in gut microbial diversity composition and metabolism. These potential changes might have a beneficial impact on health. However, there is a lack of evidence investigating the effect of probiotics on the gut microbiome and metabolome of children. We aimed to examine the potential impact of a two ( Streptococcus thermophilus and Lactobacillus delbrueckii ; S2) vs . three (S2 + Bifidobacterium animalis subsp. lactis strain BB-12) strain-supplemented yogurt. Included in this study were 59 participants, aged one to five years old, recruited to phase I of a double-blinded, randomized controlled trial. Fecal samples were collected at baseline, after the intervention, and at twenty days post-intervention discontinuation, and untargeted metabolomics and shotgun metagenomics were performed. Shotgun metagenomics and metabolomic analyses showed no global changes in either intervention group's gut microbiome alpha or beta diversity indices. The relative abundance of the two and three intervention bacteria increased in the S2 and S2 + BB12 groups, respectively, from Day 0 to Day 10 . In the S2+BB12 group, the abundance of several fecal metabolites was reduced at Day 10 , including alanine, glycine, lysine, phenylalanine, serine, and valine. These fecal metabolite changes did not occur in the S2 group. Future research using longer probiotic intervention durations and in children at risk for gastrointestinal disorders may elucidate if functional metabolite changes confer a protective gastrointestinal effect.

20.
J Cyst Fibros ; 22(4): 636-643, 2023 07.
Article En | MEDLINE | ID: mdl-36822979

BACKGROUND: The respiratory tract fungal microbiome in cystic fibrosis (CF) has been understudied despite increasing recognition of fungal pathogens in CF lung disease. We sought to better understand the fungal communities in adults with CF, and to define relationships between fungal profiles and clinical characteristics. METHODS: We enrolled 66 adults with CF and collected expectorated sputum, spirometry, Cystic Fibrosis Questionnaire-revised, and clinical data. Fungi were molecularly profiled by sequencing of the internal transcribed spacer (ITS) region. Total fungal abundance was measured by quantitative PCR. Relative abundance and qPCR-corrected abundances were determined. Selective fungus culture identified cultivable fungi. Alpha diversity and beta diversity were measured and relationships with clinical parameters were interrogated. RESULTS: Median age was 29 years and median FEV1 percent predicted 58%. Members of the Candida genus were the most frequent dominant taxa in CF sputum. Apiotrichum, Trichosporon, Saccharomyces cerevisiae, and Scedosporium were present in high relative abundance in few samples; whereas, Aspergillus species were detected at low levels. Higher FEV1% predicted and CFTR modulator use were associated with greater alpha-diversity. Chronic azithromycin use was associated with lower alpha-diversity. Patients with acute pulmonary had distinct fungal community composition compared to clinically stable subjects. Differing yeast species were mainly responsible for the community differences. CONCLUSION: The respiratory tract fungal microbiome in adults with CF is associated with lung function, pulmonary exacerbation status, macrolide use, and CFTR modulator use. Future work to better understand fungal diversity in the CF airway and its impact on lung health is necessary.


Cystic Fibrosis , Mycobiome , Humans , Adult , Fungi , Cystic Fibrosis Transmembrane Conductance Regulator , Respiratory System/microbiology , Sputum/microbiology
...